Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 88(5): 1797-803, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10797144

RESUMO

Previously, our laboratory found that pulmonary hypertension developed and lung nitric oxide (NO) production was reduced when piglets were exposed to chronic hypoxia (Fike CD, Kaplowitz MR, Thomas CJ, and Nelin LD. Am J Physiol Lung Cell Mol Physiol 274: L517-L526, 1998). The purposes of this study were to determine whether L-arginine addition augments NO production and to evaluate whether L-arginine uptake is impaired in isolated lungs of chronically hypoxic newborn piglets. Studies were performed by using 1- to 3-day-old piglets raised in room air (control) or 10% O(2) (chronic hypoxia) for 10-12 days. Lung NO production was assessed in isolated lungs from both groups by measuring the perfusate accumulation of nitrites and nitrates (collectively termed NO(-)(x)) before and after addition of L-arginine (10(-2) M) to the perfusate. The rate of perfusate NO(-)(x) accumulation increased by 220% (from 0.8 +/- 0.4 to 2.5 +/- 0.5 nmol/min, P < 0.05) after L-arginine addition to chronic hypoxic lungs but remained unchanged (3.2 +/- 0. 8 before vs. 3.3 +/- 0.4 nmol/min after L-arginine) in control lungs. In the second series of studies, L-arginine uptake was evaluated by measuring the perfusate concentration of L-[(3)H]arginine at fixed time intervals. The perfusate concentration of L-[(3)H]arginine at each time point was less (P < 0.05) in control than in chronic hypoxic lungs. Thus L-arginine uptake was impaired and may underlie in part the reduction in lung NO production that occurs when piglets are exposed to 10-12 days of chronic hypoxia. Moreover, these findings in isolated lungs lead to the possibility that L-arginine supplementation might increase in vivo lung NO production in piglets with chronic hypoxia-induced pulmonary hypertension.


Assuntos
Animais Recém-Nascidos/metabolismo , Arginina/farmacologia , Hipóxia/metabolismo , Pulmão/metabolismo , Óxido Nítrico/biossíntese , Animais , Arginina/farmacocinética , Doença Crônica , Técnicas In Vitro , Nitratos/metabolismo , Nitritos/metabolismo , Valores de Referência , Suínos
2.
Pediatr Res ; 46(6): 735-41, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10590032

RESUMO

Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.


Assuntos
Acidose Respiratória/fisiopatologia , Alcalose Respiratória/fisiopatologia , Pulmão/fisiopatologia , Circulação Pulmonar , Doença Aguda , Animais , Animais Recém-Nascidos , Pulmão/irrigação sanguínea , Oxigênio/fisiologia , Suínos , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...